Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
Environ Sci Technol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568220

RESUMEN

Although sulfur cycling in acid mine drainage (AMD)-contaminated rice paddy soils is critical to understanding and mitigating the environmental consequences of AMD, potential sources and transformations of organosulfur compounds in such soils are poorly understood. We used sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy to quantify organosulfur compounds in paddy soils from five AMD-contaminated sites and one AMD-uncontaminated reference site near the Dabaoshan sulfide mining area in South China. We also determined the sulfur stable isotope compositions of water-soluble sulfate (δ34SWS), adsorbed sulfate (δ34SAS), fulvic acid sulfur (δ34SFAS), and humic acid sulfur (δ34SHAS) in these samples. Organosulfate was the dominant functional group in humic acid sulfur (HAS) in both AMD-contaminated (46%) and AMD-uncontaminated paddy soils (42%). Thiol/organic monosulfide contributed a significantly lower proportion of HAS in AMD-contaminated paddy soils (8%) compared to that in AMD-uncontaminated paddy soils (21%). Within contaminated soils, the concentration of thiol/organic monosulfide was positively correlated with cation exchange capacity (CEC), moisture content (MC), and total Fe (TFe). δ34SFAS ranged from -6.3 to 2.7‰, similar to δ34SWS (-6.9 to 8.9‰), indicating that fulvic acid sulfur (FAS) was mainly derived from biogenic S-bearing organic compounds produced by assimilatory sulfate reduction. δ34SHAS (-11.0 to -1.6‰) were more negative compared to δ34SWS, indicating that dissimilatory sulfate reduction and abiotic sulfurization of organic matter were the main processes in the formation of HAS.

2.
J Hazard Mater ; 470: 134221, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615651

RESUMEN

Constructed wetlands (CWs) are a promising approach for treating acid mine drainage (AMD). However, the extreme acidity and high loads of heavy metals in AMD can easily lead to the collapse of CWs without proper pre-treatment. Therefore, it is considered essential to maintain efficient and stable performance for AMD treatment in CWs. In this study, pre-prepared attapulgite-soda residue (ASR) composites were used to improve the substrate of CWs. Compared with CWs filled with gravel (CWs-G), the removal efficiencies of sulfate and Fe, Mn, Cu, Zn Cd and Pb in CWs filled with ASR composites (CWs-ASR) were increased by 30% and 10-70%, respectively. These metals were mainly retained in the substrate in stable forms, such as carbonate-, Fe/Mn (oxide)hydroxide-, and sulfide-bound forms. Additionally, higher levels of photosynthetic pigments and antioxidant enzyme activities in plants, along with a richer microbial community, were observed in CWs-ASR than in CWs-G. The application of ASR composites alleviated the adverse effects of AMD stresses on wetland plants and microorganisms. In return, the increased bacteria abundance, particularly SRB genera (e.g., Thermodesulfovibrionia and Desulfobacca), promoted the formation of metal sulfides, enabling the saturated ASR adsorbed with metals to regenerate and continuously capture heavy metals. The synergistic adsorption of ASR composites and microbial sulfate reduction maintained the stable and efficient operation of CWs. This study contributes to the resource utilization of industrial alkaline by-products and promotes the breakthrough of new techniques for low-cost and passive treatment systems such as CWs.


Asunto(s)
Compuestos de Magnesio , Metales Pesados , Minería , Compuestos de Silicona , Sulfatos , Contaminantes Químicos del Agua , Humedales , Sulfatos/química , Metales Pesados/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Compuestos de Silicona/química , Compuestos de Magnesio/química , Ácidos/química , Oxidación-Reducción , Biodegradación Ambiental , Concentración de Iones de Hidrógeno
3.
Water Res ; 255: 121530, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564897

RESUMEN

A huge chemical potential difference exists between the acid mine drainage (AMD) and the alkaline neutralization solution, which is wasted in the traditional AMD neutralization process. This study reports, for the first time, the harvest of this chemical potential energy through a controlled neutralization of AMD using H+-conductive films. Polyamide films with controllable thickness achieved much higher H+ conductance than a commercially available cation exchange membrane (CEM). Meanwhile, the optimal polyamide film had an excellent H+/Ca2+ selectivity of 63.7, over two orders of magnitude higher than that of the CEM (0.3). The combined advantages of fast proton transport and high proton/ion selectivity greatly enhanced the power generation of the AMD battery. The power density was 3.1 W m-2, which is over one order of magnitude higher than that of the commercial CEM (0.2 W m-2). Our study provides a new sustainable solution to address the environmental issues of AMD while simultaneously enabling clean energy production.

4.
Environ Sci Technol ; 58(16): 7176-7185, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38606801

RESUMEN

Hydrous ferric arsenate (HFA) is a common thermodynamically metastable phase in acid mine drainage (AMD). However, little is known regarding the structural forms and transformation mechanism of HFA. We investigated the local atomic structures and the crystallization transformation of HFA at various Fe(III)/As(V) ratios (2, 1, 0.5, 0.33, and 0.25) in acidic solutions (pH 1.2 and 1.8). The results show that the Fe(III)/As(V) in HFA decreases with decreasing initial Fe(III)/As(V) at acidic pHs. The degree of protonation of As(V) in HFA increases with increasing As(V) concentrations. The Fe K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure results reveal that each FeO6 is linked to more than two AsO4 in HFA precipitated at Fe(III)/As(V) < 1. Furthermore, the formation of scorodite (FeAsO4·2H2O) is greatly accelerated by decreasing the initial Fe(III)/As(V). The release of As(V) from HFA is observed during its crystallization transformation process to scorodite at Fe(III)/As(V) < 1, which is different from that at Fe(III)/As(V) ≥ 1. Scanning electron microscopy results show that Oswald ripening is responsible for the coarsening of scorodite regardless of the initial Fe(III)/As(V) or pH. Moreover, the formation of crystalline ferric dihydrogen arsenate as an intermediate phase at Fe(III)/As(V) < 1 is responsible for the enhanced transformation rate from HFA to scorodite. This work provides new insights into the local atomic structure of HFA and its crystallization transformation that may occur in AMD and has important implications for arsenic geochemical cycling.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38602172

RESUMEN

A polyphasic taxonomic study was carried out on strain ES2T, isolated from sediment of a wetland created to remediate acid drainage from a coal mine. The rod-shaped bacterium formed yellow/orange pigmented colonies and produced the pigment flexirubin. The 16S rRNA gene sequence results assigned the strain to Chryseobacterium, with 98.9 and 98.3 % similarity to Chryseobacterium vietnamense and Chryseobacterium cucumeris, respectively. Computation of the average nucleotide identity and digital DNA-DNA hybridization values with the closest phylogenetic neighbours of ES2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The dominant fatty acids of strain ES2T were iso-C15 : 0, iso-C17 : 1 ω9c, iso C17 : 0 3-OH, and iso-C15 : 0 2-OH. The DNA G+C content was 35.5 mol%. The major polar lipid was phosphatidylethanolamine while menaquinone-6 was the only menaquinone found. This bacterium has been previously shown to possess metallophore activity towards rare earth elements, and based on genome sequencing, possesses all required genes for siderophore production/activity, possibly identifying the source of this unique ability. On the basis of the results obtained here, this bacterium is assigned to the genus Chryseobacterium as representing a new species with the name Chryseobacterium metallicongregator sp. nov., type strain ES2T (=NRRL B-65679T=KCTC 102120T).


Asunto(s)
Chryseobacterium , Ácidos Grasos , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Vitamina K 2 , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN
6.
Heliyon ; 10(6): e27985, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533070

RESUMEN

In water-stressed regions, treated acid mine drainage (AMD) water for irrigated agriculture is a potential solution to address freshwater scarcity. However, a significant knowledge gap exists on the short and long-term effects of treated AMD water on soil health. This study used high-throughput Illumina sequencing and predictive metagenomic profiling to investigate the impact of untreated AMD (AMD), quicklime- (A1Q and A2Q) and quicklime and fly ash-treated AMD water (AFQ) irrigation on soil bacterial diversity, co-occurrence networks and function. Results showed that untreated AMD water significantly increased soil acidity, electrical conductivity (EC), sulfate (SO42-), and heavy metals (HM), including reduced microbial diversity, disrupted interaction networks, and functional capacity. pH, EC, Cu, and Pb were identified as key environmental factors shaping soil microbial diversity and structure. Predominantly, Pseudomonas, Ralstonia picketti, Methylotenera KB913035, Brevundimonas vesicularis, and Methylobacteriumoryzae, known for their adaptability to acidic conditions and metal resistance, were abundant in AMD soils. However, soils irrigated with treated AMD water exhibited significantly reduced acidity (pH > 6.5), HM and SO42- levels, with an enrichment of a balanced bacterial taxa associated with diverse functions related to soil health and agricultural productivity. These taxa included Sphingomonas, Pseudoxanthomonas, Achromobacter, Microbacterium, Rhodobacter, Clostridium, Massillia, Rhizobium, Paenibacillus, and Hyphomicrobium. Moreover, treated AMD water contributed to higher connectivity and balance within soil bacterial co-occurrence networks compared to untreated AMD water. These results show that quicklime/fly ash treatments can help lessen impacts of AMD water on soil microbiome and health, suggesting its potential for irrigated agriculture in water-scarce regions.

7.
Sci Total Environ ; 926: 171709, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38494016

RESUMEN

Acid mine drainage (AMD) contains high concentrations of heavy metals, causing serious environmental pollution. Current neutralization techniques fail to recover and utilize valuable heavy metals, and generate large quantities of hazardous sludge. Manganese (Mn) is generally present at high levels in AMD. Therefore, this paper proposed a technology to recover Mn from AMD, by adding KMnO4 to converting Mn into ε-MnO2. Ultra-Violet C (UVC) was used to photolyze the residual KMnO4. The study then evaluated the processes and mechanisms involved in the technology. The photolysis of KMnO4 in strong acidic conditions was determined, and new mechanisms were proposed. MnO2 produced by the photolysis process was formed through the reaction between Mn(III) and KMnO4. In the absence of KMnO4, Mn(III) underwent further photolysis and was reduced to Mn2+. The maximum adsorption capacities of in-situ formed ε-MnO2 for Pb2+, Cd2+, and Fe3+ were 449.80, 122.05, and 779.88 mg/g, respectively. Higher Mn-OH levels and MnO2 regeneration were crucial in improving adsorption performance. Proton exchange and inner-circle complexation were the main pathways for Pb2+ and Cd2+ adsorption by in-situ formed ε-MnO2. A phase transformation occurred when a substantial amount of Fe3+ was adsorbed, leading to the gradual transformation to MnFe binary oxides. When applying in-situ formed ε-MnO2 technology for actual AMD treatment, 98.62 % of Mn in AMD was recovered within 24 h in the presence of ε-MnO2 for possible further reuse in industries, with a final recovery of 0.76 kg/m3. Further, this technique removed other heavy metals and reduced the sludge volume by 20.99 % when used as a pre-treatment step for neutralization. These results demonstrated the broad potential of this treatment technology.

8.
Sci Total Environ ; 926: 171988, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38537811

RESUMEN

The oxidation of pyrite is the main cause of acidic mine drainage (AMD), which is a very serious environmental problem in numerous mining areas around the world. Previous studies have shown that passivation agents create a hydrophobic film on the surface of pyrite, effectively isolating oxygen and water. However, the presence of abundant sulfide minerals in tailings ponds may exacerbate AMD when exposed to solar radiation, due to the semiconductor properties of pyrite. It remains uncertain whether the current surface passivation coating can effectively prevent the oxidation of pyrite under light conditions. This paper is the first to investigate the passivation effect as well as the mechanism of surface passivation coating on pyrite under illumination from the perspective of materials science. The results demonstrated that the triethylenetetramine-bisdithiocarbamate (DTC-TETA) passivation coating on pyrite almost completely suppressed the photooxidation of pyrite under illumination by changing the migration path of photogenerated charge carriers. The formation of NC(S)2-Fe chelating groups provides atomic-level interface channels for DTC-TETA to transfer electrons to pyrite and creates a favorable reduction environment for pyrite. Besides, DTC-TETA coating greatly improves the electron-hole pairs recombination efficiency of pyrite, which significantly inhibits the photogenerated electron reduction of oxygen to generate reactive oxygen species (ROS). Moreover, DTC-TETA coating captures the photogenerated holes, avoiding direct oxidation of pyrite by holes. Density functional theory (DFT) calculations revealed that the DTC-TETA coating increases the adsorption energy barrier for oxygen and water. The results extend the existing knowledge on passivation mechanisms on pyrite and hold significant implications for the future screening, evaluation, and practical application of surface passivating agents.

9.
Water Res ; 254: 121423, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461598

RESUMEN

Biological sulfidogenic processes based on sulfate-reducing bacteria (SRB) are not suitable for arsenic (As)-containing acid mine drainage (AMD) treatment because of the formation of the mobile thioarsenite during sulfate reduction. In contrast, biological sulfidogenic processes based on sulfur-reducing bacteria (S0RB) produce sulfide without pH increase, which could achieve more effective As removal than the SRB-based process. However, the reduction ability and toxicity tolerance of S0RB to As remains mysterious, which may substantially affect the practical applicability of this process when treating arsenate (As(V))-containing AMD. Thus, this study aims to develop a biological sulfur reduction process driven by S0RB, and explore its long-term performance on As(V) removal and microbial community evolution. Operating under moderately acidic conditions (pH=4.0), the presence of 10 mg/L As(V) significantly suppressed the activity of S0RB, leading to the failure of As(V) removal. Surprisingly, a drop in pH to 3.0 enhanced the tolerance of S0RB to As toxicity, allowing for efficient sulfide production (396±102 mg S/L) through sulfur reduction. Consequently, effective and stable removal of As(V) (99.9 %) was achieved, even though the sulfidogenic bacteria were exposed to high levels of As(V) (42 mg/L) in long-term trials. Spectral and spectroscopic analysis showed that As-bearing sulfide minerals were present in the bioreactor. Remarkably, the presence of As(V) induced notable changes in the microbial community composition, with Desulfurella and Clostridium identified as predominate sulfur reducers. The qPCR result further revealed an increase in the concentration of functional genes related to As transport (asrA and arsB) in the bioreactor sludge as the pH decreased from 4.0 to 3.0. This suggests the involvement of microorganisms carrying asrA and arsB in an As transport process. Furthermore, metagenomic binning demonstrated that Desulfurella contained essential genes associated with sulfur reduction and As transportation, indicating its genetic potential for sulfide production and As tolerance. In summary, this study underscores the effectiveness of the biological sulfur reduction process driven by S0RB in treating As(V)-contaminated AMD. It offers insights into the role of S0RB in remediating As contamination and provides valuable knowledge for practical applications.


Asunto(s)
Arseniatos , Arsenicales , Reactores Biológicos , Reactores Biológicos/microbiología , Azufre , Sulfuros/química , Sulfatos/química , Oxidación-Reducción
10.
Water Res ; 254: 121404, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442608

RESUMEN

Acidic pit lakes (APLs) emerge as reservoirs of acid mine drainage in flooded open-pit mines, representing extreme ecosystems and environmental challenges worldwide. The bioremediation of these oligotrophic waters necessitates the addition of organic matter, but the biogeochemical response of APLs to exogenous organic matter remains inadequately comprehended. This study delves into the biogeochemical impacts and remediation effects of digestate-derived organic matter within an APL, employing a multi-omics approach encompassing geochemical analyses, amplicon and metagenome sequencing, and ultra-high resolution mass spectrometry. The results indicated that digestate addition first stimulated fungal proliferation, particularly Ascomycetes and Basidiomycetes, which generated organic acids through lignocellulosic hydrolysis and fermentation. These simple compounds further supported heterotrophic growth, including Acidiphilium, Acidithrix, and Clostridium, thereby facilitating nitrate, iron, and sulfate reduction linked with acidity consumption. Nutrients derived from digestate also promoted the macroscopic development of acidophilic algae. Notably, the increased sulfate reduction-related genes primarily originated from assimilatory metabolism, thus connecting sulfate decrease to organosulfur increase. Assimilatory and dissimilatory sulfate reduction collectively contributed to sulfate removal and metal fixation. These findings yield multi-omics insights into APL biogeochemical responses to organic matter addition, enhancing the understanding of carbon-centered biogeochemical cycling in extreme ecosystems and guiding organic amendment-based bioremediation in oligotrophic polluted environments.


Asunto(s)
Ecosistema , Lagos , Lagos/química , Biodegradación Ambiental , Multiómica , Ácidos , Sulfatos/metabolismo
11.
Mar Pollut Bull ; 201: 116225, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460435

RESUMEN

The Huelva estuary is formed by the common mouths of the Odiel and Tinto Rivers, and inside this ecosystem is the biosphere reserve of the Odiel saltmarshes. This ecosystem has been historically affected by acid mine drainage (AMD) and by releases of pollutants from five phosphoric acid industrial plants and phosphogypsum (PG) waste stacks located in the area. This study carried out a comprehensive assessment of the environmental impact of the biosphere reserve of the Odiel saltmarshes. To this end, it was necessary to find a suitable sedimentary background (Piedras River in our case). To quantify this impact, several pollution indexes were used. According to the values reached by the indexes, this impact was classified as "serious" pollution for most trace elements, excepting the deepest layers, and "low-moderate" pollution for the 238U-series radionuclides, while no pollution for the 232Th-series and 40K radionuclides was found as expected.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Estuarios , Residuos Industriales/análisis , Ríos , Radioisótopos , España , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
12.
Environ Monit Assess ; 196(4): 332, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429461

RESUMEN

Machine learning was used to provide data for further evaluation of potential extraction of octathiocane (S8), a commercially useful by-product, from Acid Mine Drainage (AMD) by predicting sulphate levels in an AMD water quality dataset. Individual ML regressor models, namely: Linear Regression (LR), Least Absolute Shrinkage and Selection Operator (LASSO), Ridge (RD), Elastic Net (EN), K-Nearest Neighbours (KNN), Support Vector Regression (SVR), Decision Tree (DT), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multi-Layer Perceptron Artificial Neural Network (MLP) and Stacking Ensemble (SE-ML) combinations of these models were successfully used to predict sulphate levels. A SE-ML regressor trained on untreated AMD which stacked seven of the best-performing individual models and fed them to a LR meta-learner model was found to be the best-performing model with a Mean Squared Error (MSE) of 0.000011, Mean Absolute Error (MAE) of 0.002617 and R2 of 0.9997. Temperature (°C), Total Dissolved Solids (mg/L) and, importantly, iron (mg/L) were highly correlated to sulphate (mg/L) with iron showing a strong positive linear correlation that indicated dissolved products from pyrite oxidation. Ensemble learning (bagging, boosting and stacking) outperformed individual methods due to their combined predictive accuracies. Surprisingly, when comparing SE-ML that combined all models with SE-ML that combined only the best-performing models, there was only a slight difference in model accuracies which indicated that including bad-performing models in the stack had no adverse effect on its predictive performance.


Asunto(s)
Monitoreo del Ambiente , Epiclorhidrina , Hierro , Aprendizaje Automático , Sulfatos
13.
Materials (Basel) ; 17(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38473639

RESUMEN

Acid mine drainage (AMD) is a major environmental problem caused by the release of acidic, toxic, and sulfate-rich water from mining sites. This study aimed to develop novel adsorbents for the removal of chromium (Cr(VI)), cadmium (Cd(II)), and lead (Pb(II)) from simulated and actual AMD using hybrid ion-exchange resins embedded with hydrous ferric oxide (HFO). Two types of resins were synthesized: anionic exchange resin (HAIX-HFO) for Cr(VI) removal and cationic exchange resin (HCIX-HFO) for Cd(II) and Pb(II) removal. The resins were characterized using scanning electron microscopy and Raman spectroscopy, which confirmed the presence of HFO particles. Batch adsorption experiments were conducted under acidic and sulfate-enhanced conditions to evaluate the adsorption capacity and kinetics of the resins. It was found that both resins exhibited high adsorption efficiencies and fast adsorption rates for their respective metal ions. To explore the potential adsorption on actual AMD, HCIX-HFO demonstrated significant removal of some metal ions. The saturated HCIX-HFO resin was regenerated using NaCl, and a high amount of the adsorbed Cd(II) and Pb(II) was recovered. This study demonstrates that HFO-embedded hybrid ion-exchange resins are promising adsorbents for treating AMD contaminated with heavy metals.

14.
Bull Environ Contam Toxicol ; 112(2): 33, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342847

RESUMEN

Abundant iron and sulfate resources are present in acid mine drainage. The synthesis of schwertmannite from AMD rich in iron and sulfate could achieve the dual objectives of resource recovery and wastewater purification. However, schwertmannite cannot emerge spontaneously due to the Gibbs free energy greater than 0. This results in the iron and sulfate in AMD only being able to use the energy generated by oxidation in the coupling reaction to promote the formation of minerals, but this only achieved partial mineralization, which limited the remediation of AMD through mineralization. In order to clarify the mechanism of iron and sulfate removal by the formation of schwertmannite in AMD, kinetic and thermodynamic parameters were crucial. This work used H2O2 oxidation of Fe2+ as a coupling reaction to promote the formation of schwertmannite from 64.4% of iron and 15.7% of sulfate in AMD, and determined that 99.7% of the iron and 89.9% of sulfate were immobilized in the schwertmannite structural, and only a small fraction was immobilized by the adsorption of schwertmannite, both of which were consistent with second-order kinetics models. The thermodynamic data suggested that reducing the concentration of excess sulfate ions or increasing the energy of the system may allow more iron and sulfate to be immobilized by forming schwertmannite. Experimental verification using the reaction of potassium bicarbonate with the acidity in solution to increase the energy in the system showed that the addition of potassium bicarbonate effectively promoted the formation of schwertmannite from Fe3+ and SO42-. It provided a theoretical and research basis for the direct synthesis of schwertmannite from Fe3+ and SO42- rich AMD for the removal of contaminants from water and the recovery of valuable resources.


Asunto(s)
Bicarbonatos , Compuestos de Hierro , Hierro , Compuestos de Potasio , Adsorción , Peróxido de Hidrógeno , Compuestos de Hierro/química , Oxidación-Reducción , Sulfatos/química , Concentración de Iones de Hidrógeno
15.
Sci Total Environ ; 919: 170806, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350575

RESUMEN

The mining and processing of some minerals and coal result in the production of acid mine drainage (AMD) which contains elevated levels of sulfate and metals, which tend to pose serious environmental issues. There are different technologies that have been developed for the treatment of wastewater or AMD. However, there is no "one-size-fits-all" solution, hence a combination of available technologies should be considered to achieve effective treatment. In this review, AMD treatment technologies and the possible alignment in tandem of the different treatment technologies were discussed. The alignment was based on the target species of each technology and AMD composition. The choice of the technologies to combine depends on the quality of AMD and the desired quality of effluent depending on end use (e.g., drinking, industrial, irrigation or release into the environment). AMD treatment technologies targeting metals can be combined with membrane and/or ettringite precipitation technologies that focus on the removal of sulfates. Other technologies can be added to deal with the secondary waste products (e.g., sludge and brines) from the treatment processes. Moreover, some technologies such as ion exchange and adsorption can be added to target specific valuable elements in AMD. Such combinations have the potential to result in effective AMD treatment and minimum waste production, which are not easily achievable with the individual technologies. Overall, this review presents combinations of AMD treatment technologies which can work best together to produce optimal water quality and valuable products in a cost-effective manner.

16.
Water Res ; 252: 121221, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324985

RESUMEN

This study proposes a novel method by forming biogenic K-jarosite coatings on pyrite surfaces driven by Acidithiobacillus ferrooxidans (A. ferrooxidans) to reduce heavy metal release and prevent acid mine drainage (AMD) production. Different thicknesses of K-jarosite coatings (0.7 to 1.1 µm) were able to form on pyrite surfaces in the presence of A. ferrooxidans, which positively correlated with the initial addition of Fe2+ and K+ concentrations. The inhibiting effect of K-jarosite coatings on pyrite oxidation was studied by electrochemical measurements, chemical oxidation tests, and bio-oxidation tests. The experimental results showed that the best passivation performance was achieved when 20 mM Fe2+ and 6.7 mM K+ were initially introduced with a bacterial concentration of 4 × 108 cells·mL-1, reducing chemical and biological oxidation by 70 % and 98 %, respectively (based on the concentration of total iron dissolved into the solution by pyrite oxidation). Similarly, bio-oxidation tests of two mine waste samples also showed sound inhibition effects, which offers a preliminary demonstration of the potential applicability of this method to actual waste rock. This study presents a new perspective on passivating the oxidation of metal sulfide tailings or waste and preventing AMD.


Asunto(s)
Acidithiobacillus , Hierro , Sulfatos , Compuestos Férricos , Sulfuros , Oxidación-Reducción
17.
Sci Total Environ ; 918: 170666, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38316310

RESUMEN

Colloids can potentially affect the efficacy of traditional acid mine drainage (AMD) treatment methods such as precipitation and filtration. However, it is unclear how colloids affect antimony (Sb) migration in AMD, especially when natural organic matter (NOM) is present. To conduct an in-depth investigation on the formation and migration behavior of NOM, iron (Fe), Sb and NOM-Fe-Sb colloids in AMD, experiments were performed under simulated AMD conditions. The results demonstrate significant variations in the formation of NOM-Fe-Sb colloids (1-3-450 nm) as the molar ratio of carbon to iron (C/Fe) increases within acidic conditions (pH = 3). Increasing the C/Fe molar ratio from 0.1 to 1.2 resulted in a decrease in colloid formation but an increase in particulate fraction. The distribution of colloidal Sb, Sb(III), and Fe(III) within the NOM-Fe-Sb colloids decreased from 68 % to 55 %, 72 % to 57 %, and 68 % to 55 %, respectively. Their distribution in the particulate fraction increased from 28 % to 42 %, 21 % to 34 %, and 8 % to 27 %. XRD, FTIR, and SEM-EDS analyses demonstrated that NOM facilitates the formation and crystallization of Fe3O4 and FeSbO4 crystalline phases. The formation of the colloids depended on pH. Our results indicate that NOM-Fe-Sb colloids can form when the pH ≤ 4, and the proportion of colloidal Sb fraction within the NOM-Fe-Sb colloids increased from 9 % to a maximum of 73 %. Column experiments show that the concentration of NOM-Fe-Sb colloids reaches its peak and remains stable at approximately 3.5 pore volumes (PVs), facilitating the migration of Sb in the porous media. At pH ≥ 5, stable NOM-Fe-Sb colloids do not form, and the proportion of colloidal Sb fraction decreases from 7 % to 0 %. This implies that as pH increases, the electrostatic repulsion between colloidal particles weakens, resulting in a reduction in the colloidal fraction and an increase in the particulate fraction. At higher pH values (pH ≥ 5), the repulsive forces between colloidal particles nearly disappear, promoting particle aggregation. The findings of this study provide important scientific evidence for understanding the migration behavior of NOM-Fe-Sb colloids in AMD. As the pH gradually shifts from acidic to near-neutral pH during the remediation process of AMD, these results could be applied to develop new strategies for this purpose.

18.
Heliyon ; 10(4): e26590, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420429

RESUMEN

The accumulation and uptake efficiency of heavy metals, including As, Mn, and Cu, in water hyacinth (Eichhornia crassipes (Mart.) Solms) grown in synthetic acidic wastewater supplemented with sodium phytate (SP) was examined. Three treatments were studied using synthetic acidic wastewater containing 0.25, 5.0, and 1.0 mg/L of As, Mn, and Cu, respectively, (SM + heavy metals) and having pH in the range of 4-6, which comprised of (1) control treatments using SM + heavy metals at pH 4, 5, 6 without SP, and treatments using SM + heavy metals at pH 4, 5, 6 with SP: Cu (2) in a 1:3 M ratio and (3) a 1:6 M ratio. The translocation factor (TF < 1) indicated that plants had a lower capacity to transport heavy metals from the roots to the stems. The shoots of water hyacinth exhibited the highest capacity to absorb and store As in the pH 4-treatment with SP (SP:Cu1:3 mol), whereas the roots showed the greatest capacity at pH 4 without SP. The roots and shoots of the water hyacinth showed the greatest capacity to take up and store Mn in the pH 5-treatment with a 1:3 M ratio of SP:Cu. The roots showed the greatest capacity to take up and store Cu in the pH 6-treatment, and the shoots showed the highest capability in the pH 5-treatment with 1:3 M ratio of SP:Cu. Moreover, analysis of the chemical forms revealed that As accumulated in the arsenate form, whereas Mn accumulated in the divalent form.

19.
Chemosphere ; 352: 141403, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368967

RESUMEN

High concentrations of metals and sulfates in acid mine drainage (AMD) are the cause of the severe environmental hazard that mining operations pose to the surrounding ecosystem. Little study has been conducted on the cost-effective biological process for treating high AMD. The current research investigated the potential of the proposed carbon source and sulfate reduction bacteria (SRB) culture in achieving the bioremediation of sulfate and heavy metals. This work uses individual and combinatorial bioaugmentation and bio-stimulation methods to bioremediate acid-mine-influenced groundwater in batch microcosm experiments. Bioaugmentation and bio-stimulation methods included pure culture SRB (Desulfovibrio vulgaris) and microsized oil droplet (MOD) by emulsifying corn oil. The research tested natural attenuation (T 1), bioaugmentation (T2), biostimulation (T3), and bioaugmentation plus biostimulation (T4) for AM-contaminated groundwater remediation. Bioaugmentation and bio-stimulation showed the greatest sulfate reduction (75.3%) and metal removal (95-99%). Due to carbon supply scarcity, T1 and T2 demonstrated 15.7% and 27.8% sulfate reduction activities. Acetate concentrations in T3 and T4 increased bacterial activity by providing carbon sources. Metal bio-precipitation was substantially linked with sulfate reduction and cell growth. SEM-EDS study of precipitates in T3 and T4 microcosm spectra indicated peaks for S, Cd, Mn, Cu, Zn, and Fe, indicating metal-sulfide association for metal removal precipitates. The MOD provided a constant carbon source for indigenous bacteria, while Desulfovibrio vulgaris increased biogenic sulfide synthesis for heavy metal removal.


Asunto(s)
Desulfovibrio vulgaris , Desulfovibrio , Metales Pesados , Biodegradación Ambiental , Aceite de Maíz , Zea mays , Ecosistema , Bacterias , Ácidos , Sulfatos , Carbono , Sulfuros
20.
mSystems ; 9(3): e0096723, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323850

RESUMEN

The biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reducing bacterium (aSRB) Acididesulfobacillus acetoxydans can perform dissimilatory nitrate reduction to ammonium (DNRA). While encoding a Nar-type nitrate reductase, A. acetoxydans lacks recognized nitrite reductase genes. In this study, A. acetoxydans was cultivated under conditions conducive to DNRA. During cultivations, we monitored the production of potential nitrogen intermediates (nitrate, nitrite, nitric oxide, hydroxylamine, and ammonium). Resting cell experiments were performed with nitrate, nitrite, and hydroxylamine to confirm their reduction to ammonium, and formed intermediates were tracked. To identify the enzymes involved in DNRA, comparative transcriptomics and proteomics were performed with A. acetoxydans growing under nitrate- and sulfate-reducing conditions. Nitrite is likely reduced to ammonia by the previously undescribed nitrite reductase activity of the NADH-linked sulfite reductase AsrABC, or by a putatively ferredoxin-dependent homolog of the nitrite reductase NirA (DEACI_1836), or both. We identified enzymes and intermediates not previously associated with DNRA and nitrosative stress in aSRB. This increases our knowledge about the metabolism of this type of bacteria and helps the interpretation of (meta)genome data from various ecosystems on their DNRA potential and the nitrogen cycle.IMPORTANCENitrogen is crucial to any ecosystem, and its bioavailability depends on microbial nitrogen-transforming reactions. Over the recent years, various new nitrogen-transforming reactions and pathways have been identified, expanding our view on the nitrogen cycle and metabolic versatility. In this study, we elucidate a novel mechanism employed by Acididesulfobacillus acetoxydans, an acidophilic sulfate-reducing bacterium, to reduce nitrate to ammonium. This finding underscores the diverse physiological nature of dissimilatory reduction to ammonium (DNRA). A. acetoxydans was isolated from acid mine drainage, an extremely acidic environment where nitrogen metabolism is poorly studied. Our findings will contribute to understanding DNRA potential and variations in extremely acidic environments.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Nitritos/metabolismo , Ecosistema , Desnitrificación , Bacterias/metabolismo , Hidroxilamina , Nitrito Reductasas/metabolismo , Nitrógeno , Hidroxilaminas , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...